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Abstract. A theoretical model is suggested, which describes generation of misfit dislocations in
film/substrate composites of wire form. In the framework of the model, the ranges of the geometric
parameters (wire radius, film thickness, misfit parameter) of a wire composite are calculated at
which the generation of misfit dislocations is energetically favourable. The specific features of
generation of misfit dislocations in wire composites are discussed and compared with those in
conventional platelike composites.

1. Introduction

Film/substrate composite solids exhibiting functional physical properties serve as key materials
in many contemporary high technologies. The stability of both structure and properties of
film/substrate composite solids, which is crucial for application of such solids, is strongly
influenced by generation and evolution of misfit dislocations (MDs). Such MDs are generated
as defects that, in part, accommodate misfit stresses occurring due to a misfit (geometric
mismatch) between adjacent crystalline lattices of films and substrates. Generation and
evolution of MDs in film/substrate composite solids are crucially affected by geometric
parameters of such solids. The effect of the geometric parameters on behaviour of MDs
is the subject of intensive experimental and theoretical studies, which commonly deal
with MDs in platelike composite solids, e.g. [1–24]. However, in parallel with platelike
composites, film/substrate composites of wire form are conventional functional elements used
in contemporary high technologies. The cylindrical geometry of wire composites causes MDs
in such composites to exhibit behaviour which is, in general, different from commonly studied
behaviour of MDs in film/substrate composites. The main aims of this paper are to suggest a
first approximation model of MDs in film/substrate composites of wire form and to theoretically
analyse (by methods of elasticity theory of defects in solids) the effect of geometric parameters
of such composites on generation of MDs.

2. Misfit dislocations in wire composite. Model

Here we model in the first approximation a wire composite (consisting of a wire substrate
covered by either a thin or thick film) as a composite cylinder with radius R2 and infinite
length. The model cylinder is composed of an internal cylinder (substrate) of radius R1 < R2

and a film of thicknessH = R2 −R1, which envelops the internal cylinder as shown in figure 1.
In the framework of the suggested first approximation model, we will not take into account the
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Figure 1. Misfit dislocations at the interphase boundary in a model wire composite.

crystallography of the adjacent film and substrate, in which case the interphase (film/substrate)
boundary is treated as a surface of the internal cylinder (figure 1). (That is, there are no facets
at the interphase boundary).

The film and substrate are assumed to be isotropic solids having the same values of the
shear modulus G and the same values of Poisson ratio ν. The film/substrate boundary is
characterized by the misfit parameter

f = 2(a2 − a1)

a2 + a1
(1)

where a1 and a2 are the crystal lattice parameters of the substrate and the film, respectively.
Misfit stresses occur in film/substrate composite solids due to the geometric mismatch

characterized by f at interphase boundaries between crystalline lattices of films and substrates.
In most cases, a partial relaxation of the misfit stresses is realized via generation of MDs;
see e.g reviews [5, 7, 21]. Let us consider MDs in the situation discussed (figure 1). Since
the crystallography of the adjacent film and substrate is not taken into account, MDs, if
they are formed, are supposed to be regularly distributed along the interphase boundary at
thermodynamic equilibrium (figure 1) and to have Burgers vectors as shown in figure 1. In the
framework of our model, MDs are of the edge type; their lines are parallel with the axis of the
composite cylinder (figure 1).

Let us analyse the conditions at which the generation of MDs at the interphase boundary
is energetically favourable in a wire composite solid. The same problem in the situation with
two- and multi-layer platelike composites is commonly solved via both a calculation of the
elastic energy density of MDs and its minimization with respect to the MD ensemble density,
see e.g. [2, 4–10, 12–16, 18, 21–24]. In this paper, we will use the other calculation scheme
suggested by Gutkin and Romanov [11] for an analysis of MD generation in a thin two-layer
plate. This scheme is based on a comparison of energetic characteristics of two physical states
realized in a composite solid, namely the coherent state with MD-free interphase boundary
and the semi-coherent state with the interphase boundary containing one (‘first’) MD, which
accommodates, in part, the misfit stresses. Thus, the wire composite in the coherent (MD-free)
state is characterized by the total elastic energy (per unit length of the composite) being equal
to the misfit strain energyWf related to misfitting at the interphase boundary only. When one
(first) MD is generated at the interphase boundary in the wire composite, its total energy W
consists of the four terms:

W = Wf +Wd +Wc +Wint (2)
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whereWd denotes the elastic energy of the MD,Wc the energy of the MD core andWint the
elastic energy associated with the elastic interaction between the MD and the misfit stresses.
The generation of the first MD is energetically favourable, if it leads to a decrease of the total
energy, that is, ifW −Wf < 0. With formula (2) taken into account, we come to the following
criterion for the generation of the first MD to be energetically favourable:

Wd +Wc +Wint < 0. (3)

In order to calculate the ranges of values of wire composite parameters (wire substrate radius
R1, film thickness H and misfit parameter f ) at which inequality (3) is valid, in the following
sections we will calculate the misfit stresses and termsWd ,Wc andWint .

3. Misfit stresses in wire composite

In this section, we will calculate the misfit stresses in the model wire composite (figure 1).
Let ε(k)ij be the tensor of misfit strain in the kth region, where k = 1 for the wire substrate and

k = 2 for the film (figure 1). Let us suppose ε(2)ij = 0. In the simple case of a dilatational

misfit we assume ε(1)ij = f δij , where δij = 1, if i = j , and = 0, if i �= j . The total strain ε(k)ij
in the wire composite is the sum of the misfit strain ε(k)ij and elastic strain e(k)ij :

ε
(k)
ij = ε(k)ij + e(k)ij . (4)

In the cylindrical coordinate system with the z-axis being the cylinder axis, due to the axial
symmetry of the model wire composite (figure 1), the total strain components are expressed
via displacement as follows [25]:

ε(k)rr = ∂u(k)r

∂r
ε(k)ϕϕ = u(k)r

r
ε(k)zz = ∂u(k)z

∂z
= 0. (5)

The stress tensor can be written using Hooke’s law [25] as

σ
(k)
ij = 2G

(
e
(k)
ij +

ν

1 − 2ν
e(k)

)
(6)

where e(k) = e
(k)
ii . More precisely, in the discussed situation with the wire composite, the

components of the stress tensor are as follows:

σ (1)rr = 2G

(
ε(1)rr +

ν

1 − 2ν
ε(1) − 1 + ν

1 − 2ν
f

)
(7)

σ (1)ϕϕ = 2G

(
ε(1)ϕϕ +

ν

1 − 2ν
ε(1) − 1 + ν

1 − 2ν
f

)
(8)

σ (1)zz = 2G
νε(1) − (1 + ν)f

1 − 2ν
(9)

σ
(2)
ij = 2G

(
ε
(2)
ij +

ν

1 − 2ν
ε(2)

)
(10)

where ε(k) = ε(k)ii . From the equation of mechanical equilibrium [26]

∂σrr

∂r
+
σrr − σϕϕ

r
= 0 (11)

with the stress tensor components given by formulae (7)–(10), we find the following differential
equation for displacements:

d2u(k)r

dr2
+

1

r

du(k)r
dr

− u(k)r

r2
= 0. (12)
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Its solution is as follows:

u(k)r = Akr +
Bk

r
(13)

where the constants Ak and Bk are derived from the boundary conditions

u(1)r (r → 0) has a limited value (14)

u(1)r (r = R1) = u(2)r (r = R1) (15)

σ (1)rr (r = R1) = σ (2)rr (r = R1) (16)

σ (2)rr (r = R2) = 0. (17)

As a result, we obtain these constants to be

A1 = 1 + ν

1 − ν
f

2

R2
2 + (1 − 2ν)R2

1

R2
2

B1 = 0 A2 = A1 − 1 + ν

1 − ν
f

2

B2 = 1 + ν

1 − ν
f

2
R2

1 . (18)

From (5), (7)–(10), (13) and (18) we find the non-vanishing misfit stress components σfij (equal

to σ (1)ij at r < R1 and to σ (2)ij at r > R1) as follows:

σfrr = σ ∗
(
R2

1 − R2
2

R2
2

 [R1 − r] +
R2

1

R2
2

r2 − R2
2

r2
 [r − R1]

)
(19)

σfϕϕ = σ ∗
(
R2

1 − R2
2

R2
2

 [R1 − r] +
R2

1

R2
2

r2 + R2
2

r2
 [r − R1]

)
(20)

σfzz = 2σ ∗
(
νR2

1 − r2

r2
 [R1 − r] +

νR2
1

r2
 [r − R1]

)
(21)

where σ ∗ = Gf 1+ν
1−ν , and  [x] denotes the Heaviside function ( [x] = 1, if x > 0; and

 [x] = 0, if x < 0). These formulae will be used in the next section to calculate energetic
characteristics of MDs in wire composites.

4. Energetic characteristics of misfit dislocations in wire composites

Let us calculate the elastic energy of an MD and that of its interaction with the misfit stresses
in wire composites (figure 1). In doing so, we suppose the MD line (parallel with the substrate
cylinder axis) to have the Cartesian coordinates x = x0 and y = R1 (figure 2). The Burgers
vector b of the MD is directed along the x-axis. The stress function of this dislocation can be
derived from the corresponding stress function [27, 28] of a disclination of strength ω whose
line is parallel to the cylinder axis but stands off it. To do so, we use the representation of a
dislocation as a dipole of wedge disclinations with strengths ω and −ω, distant by b/ω from
each other [28]. As a result, the stress function in question is as follows [29]:

χ = Db

2

(
(y − R1) ln

C2r2

P 2R2
2

+
R1(r

2 − R2
2)(x

2
0 + R2

1 − R2
2)

R2
2C

2
+
yR2

2P
2

r2C2

)
(22)

where P 2 = (x0 − x)2 + (R1 − y)2, C2 =
(
x0 − x R2

2
r2

)2
+

(
R1 − y R2

2
r2

)2
, r2 = x2 + y2 and

D = G/[2π(1 − ν)]. In these circumstances, the elastic energy of the dislocation (the energy
per its unit length) is expressed by the following formula [30]:

Wd = −b
2

∫ R2

R1+rc

σ dxx(x = x0, y) dy. (23)
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Figure 2. A dislocation in a thin cylinder.

In formula (23), rc denotes the core cut-off radius, while the stress σdxx is calculated with the
help of formula [26]

σdxx = ∂2χ

∂y2
. (24)

Using relationship (24), equation (23) can be rewritten in the case of x0 = 0 as

Wd = b

2

(
∂χ

∂y
(x = 0, x0 = 0, y = R1 + rc)− ∂χ

∂y
(x = 0, x0 = 0, y = R2)

)
. (25)

From (22) and (25) we find the following formula for the elastic energy of an MD placed at
(x = x0 = 0, y = R1) (figure 2):

Wd = Db2

2

(
h(h− 2)(h− r0)(h− 2 − r0)[2h(h− 2 − r0)− 1 + 2r0]

2[h2 − (2 + r0)h + r0]2
+ ln

h(2 − h + r0)

r0

)

(26)

where h = H/R2 is the ratio of the film thickness to the wire (cylinder) radius, and r0 = rc/R2.
The elastic energy of the interaction between the MD and the misfit stress field is given

by [30]:

Wint = −b
∫ R2

R1

σfxx(x = x0 = 0, y) dy (27)

where σfxx(x = x0 = 0, y) = σfϕϕ(x = x0 = 0, y). From (20) and (27) we obtain

Wint = σ ∗bR1h(h− 2). (28)

The energy of the MD coreWc is about Db2/2 [30].
As a result of our calculations, from (3), (26) and (28) we find the following criterion for

the generation of MDs in a wire composite to be energetically favourable:

f > fc(R1, H) (29)
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Figure 3. The surface fc(R1, H) = f separates regions α (interphase with MDs) and β (interphase
without MDs) in the space of geometric parameters of a wire composite.

where

fc(R1, H) =
(

1 +
h(h− 2)(h− r0)(h− 2 − r0)[2h(h− 2 − r0)− 1 + 2r0]

2[h2 − (2 + r0)h + r0]2

+ ln
h(2 − h + r0)

r0

)
b

4π(1 + ν)R1h(2 − h) . (30)

In equation 30, fc(R1, H) denotes the critical misfit above which an MD is favoured to nucleate.
The surface fc(R1, H) = f in the space of parameters (R1, H, f ) is shown in figure 3,

for ν = 0.3 and rc = b = 0.4 nm. This surface separates the two regions α and β, in which
case the combinations of parameters R1, H and f corresponding to points in the region α (β,
respectively) are such that the generation of MDs is energetically favourable (unfavourable,
respectively).

In general, the following three situations can occur depending on the relationship between
the substrate radius R1 and film thickness H :

(i) Thin film (H � R1). In this situation, the energetic criterion for the generation of MDs
entails from both equation (29) and the relationship R1/H � 1. The generation of MDs
is energetically favourable at interphase boundaries if the film thickness is higher than the
critical thickness Hc derived from the equation

1 − 2Hc(Hc − rc)
(2Hc − rc)2 + ln

2Hc − b
rc

= 8π(1 + ν)f
Hc

b
. (31)

This equation for the critical thickness of a thin wire film coincides with that for the critical
thickness of a thin platelike film [2]. The dependence of Hc on the misfit parameter f is
shown in figure 4.

(ii) Small cylindrical substrate (H � R1). In this situation, the energetic criterion for the
generation of MDs is caused by both equation (29) and the relationship R1/H � 1. So,
the generation of MDs is energetically favourable, if

H < b exp

(
4π(1 + ν)f

R1

b
+

1

2

)
(32)
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Figure 4. Critical thickness Hc of a thin wire film against misfit parameter f .

that is, if the film thickness is lower than some critical thickness. Inequality (32) can be
rewritten as follows:

R1 >
(ln H

b
− 1

2 )b

4π(1 + ν)f
. (33)

Formula (33) is indicative of the fact that the generation of MDs is energetically favourable,
if the substrate radius R1 is higher than some critical radius.

(iii) Substrate radius and film thickness are of the same order (R1 ≈ H ). In this situation,
the following cases can be realized depending on the parameters of a wire composite
(figure 5):
(a) Generation of MDs is energetically unfavourable at any value of the film thickness.

This is illustrated in figure 5(a), by the horizontal line f = 0.003, which does not
intersect the plot of the function fc(R1, H).

(b) Generation of MDs is energetically favourable, if the film thickness H is in some
range, that is, if Hc1 < H < Hc2. This situation is illustrated in figure 5(b), see the
horizontal line f = 0.004, which intersects the plot of the dependence fc(R1, H) at
the two points, H = Hc1 and H = Hc2.

Figure 5 illustrates also the fact that the formation of MDs is energetically unfavourable
in wire composites with misfit parameter f lower than some misfit parameter f0 depending on
the substrate radius R1 (f < f0(R1)). In order to reveal the character of dependences of Hc1,
Hc2 and f0 onR1, the functions fc(R1, H) are calculated and shown in figure 6. From figure 6
it follows that f0 increases, and the interval [Hc1, Hc2] decreases when R1 decreases. As a
corollary, wire composites tend to be free from MDs when the substrate radius R1 decreases.
In contrast, f0 decreases, Hc1 decreases and Hc2 increases with growth of R1 (see figure 6).
In the limiting case with R1 → ∞, we find that f0 → 0 and Hc2 → ∞.

Finally, let us briefly discuss possible mechanisms for generation of MDs in wire
composites. One of the most effective mechanisms in questions, as with the situation with
conventional platelike composites, is nucleation of edge dislocations at a free surface of a wire
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(a)

(b)

Figure 5. The dependence fc(R1, H) shown for the case R1 = 100 b. Horizontal lines
correspond to different values of misfit parameter f ; (a) f = 0.003, interphase without MDs,
(b) f = 0.004, interphase without MDs when H < Hc1 or H > Hc2, and interphase with MDs
when Hc1 < H < Hc2.

composite and their consequent motion (gliding plus climbing) to the interphase boundary.
In this situation, orientation of Burgers vectors of MDs at the interphase boundary relative
to cylindrical surface of the boundary is rather arbitrary, because glide planes of the film
intersect the interphase boundary surface at widely varied angles. (This is in contrast to
MDs in conventional platelike composites where glide planes of the film intersect a plane
interphase boundary at fixed angles.) Other possible mechanisms for generation of MDs in a
wire composite, that are analogies of such mechanisms in conventional platelike composites,
are as follows: gliding of dislocations from internal dislocation sources to the interphase
boundary; nucleation of dislocation semi-loops at a free surface and their consequent expansion
and motion to the interphase boundary; and formation of partial MDs and their consequent
merging into perfect MDs. Action of the mechanisms for generation of MDs is sensitive to
geometry of a wire composite and, in general, is different from that in conventional platelike
composites. More than that, there are mechanisms which are realized in only wire composites.
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Figure 6. The dependences of critical misfit parameter fc on logH/b. Curves 1, 2 and 3 correspond
to substrate radius R1 = 100b, 500b, 1000b, respectively.

(a) (b)

Figure 7. Mechanisms for generation of misfit dislocations in a wire composite. (a) Nucleation of
a dislocation at a free surface and its consequent motion to the interphase boundary. (b) Nucleation
of a dislocation dipole at a free surface and its consequent motion to the interphase boundary.

For instance, nucleation of a dislocation dipole at a free surface and its consequent motion to
the interphase boundary (figure 7(b)) is effective in only wire composites. In doing so, stress
fields of the dislocations composing the dipole (figure 7(b)) screen each other. As a corollary,
the energetic barrier for nucleation of the dipole and its motion near the free surface is lower
than that in the situation with an isolated dislocation (figure 7(a)). A detailed quantitative
(cumbersome and labour intensive) examination of the mechanisms discussed is beyond the
scope of this paper. This will be the objective of further studies based on the results of the
present work.

5. Concluding remarks

Here we have suggested a first approximation model of film/substrate composite solids of wire
form that are often used in contemporary high technologies. In the framework of the model,
composites are represented as elastically isotropic solid cylinders, each consisting of an internal
cylinder (a substrate) covered by a film (figure 1). The elastic constants (the shear modulus,
Poisson ratio) are assumed to be the same for the substrate and the film composing a wire solid,
while an interphase boundary is characterized by non-zero misfit parameter f and serves as
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a source of misfit stresses. In the framework of the suggested model, we have theoretically
examined the generation of MDs (defects that, in part, accommodate the misfit stresses) at
interphase boundaries in wire composites. The results of our quantitative examinations are in
short as follows:

(i) As with the commonly studied situation with platelike film/substrate composites,
generation of MDs is energetically favourable in wire composites when their geometric
parameters are in certain ranges (calculated above; see figures 3–6).

(ii) The set of geometric parameters crucially affecting the generation of MDs in wire
composites contains the wire composite radius R2, the film thickness H and the misfit
parameter f .

(iii) The cylindrical geometry of film/substrate wire composites and finiteness of their substrate
radii cause the generation of MDs (as an energetically favourable process) to be limited
in such composites as compared with platelike film/substrate composites having semi-
infinite substrates. More precisely, in wire composites, at sufficiently small values of their
misfit parameter f and internal radius R1, MDs are not generated at any film thickness,
whereas in composites with platelike semi-infinite substrates, there always exists a critical
thickness above which MDs may be formed.

These results are important for technological applications of wire composites. In particular,
point (iii) is worth noting in context of a technologically interesting possibility of exploiting
wire composites with thin films instead of platelike composites (if it is admissible). Actually,
both a large value of the thin film thickness and the coherency of interphase boundaries are
often highly desired from an application viewpoint. In these circumstances, in order to exploit
high functional properties of film/substrate composites with comparatively large values of H
and coherent interphase boundaries, one can use wire composites instead of platelike ones (if
it is admissible).

The quantitative results obtained in this paper are approximate. However, they can be used,
on the one hand, to estimate the structural stability and stability of functional properties of real
wire composites and, on the other hand, as a basis for further investigations of film/substrate
composites with wire geometry as well as composites with an alternative non-trivial geometry.
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